Refine Your Search

Topic

Search Results

Journal Article

A Diesel Engine Ring Pack Performance Assessment

2024-03-23
Abstract Demonstrating ring pack operation in an operating engine is very difficult, yet it is essential to optimize engine performance parameters such as blow-by, oil consumption, emissions, and wear. A significant amount of power is lost in friction between piston ring–cylinder liner interfaces if ring pack parameters are not optimized properly. Thus, along with these parameters, it is also necessary to reduce friction power loss in modern internal combustion engines as the oil film thickness formed between the piston ring and liner is vital for power loss reduction due to friction. Hence, it has also been a topic of research interest for decades. Piston and ring dynamics simulation software are used extensively for a better ring pack design. In this research work, a similar software for piston ring dynamics simulation reviews the ring pack performance of a four-cylinder diesel engine.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Coupling Capacitor Double-Resonance Topology for Electric-Field Coupled Power Transfer System Using Vehicle Tire

2021-11-03
Abstract The electric-field coupled power transfer (ECPT) system with a coupling capacitor double-resonance circuit is proposed for electric vehicle (EV) charging. The article analyzes the plate capacitors between the EV and ground copperplate and introduces the coupling capacitor double-resonance circuit. The two-port network impedance matching of two topologies coupling capacitor double resonance is simulated, and then double side L impedance matching network and coupling capacitor double resonance with Series-Series (S-S) topology are proposed to solve the transmission efficiency decrease led by plate capacitances’ fluctuation. A prototype of the ECPT system is designed and built to prove the validity of the proposed methods. It is shown that the ECPT system realized higher than 60 W of electrical power, which is dynamic wireless transferred through the tire steel belt and the ground copperplate with at least 88% efficiency when the tires are rolling.
Journal Article

A Coupling Architecture for Remotely Validating Powertrain Assemblies

2023-03-15
Abstract Among the myriad of potential hybrid powertrain architectures, selecting the optimal for an application is a daunting task. Whenever available, computer models greatly assist in it. However, some aspects, such as pollutant emissions, are difficult to model, leaving no other option than to test. Validating plausible options before building the powertrain prototype has the potential of accelerating the vehicle development even more, doing so without shipping components around the world. This work concerns the design of a system to virtually couple—that is, avoiding physical contact—geographically distant test rigs in order to evaluate the components of a powertrain. In the past, methods have been attempted, either with or without assistance of mathematical models of the coupled components (observers). Existing methods are accurate only when the dynamics of the systems to couple are slow in relation to the communication delay.
Journal Article

A Comprehensive Study of Vibration Suppression and Optimization of an Electric Power Steering System

2021-02-11
Abstract Electric power steering (EPS) systems have become the most advantageous steering system used in vehicles. They provide better fuel efficiency and a more compact design over traditional hydraulic power steering (HPS) systems. However, EPS systems are afflicted with unwanted noise and vibration that can undermine the safety of drivers. This article presents a mathematical framework for vibration analysis in a column-type EPS system. The steering column is modeled as a continuous clamped column. The equations of motion are derived using Hamilton’s principle, and explicit expressions are presented for the frequency and transmissibility equations. A three-degrees-of-freedom (3-DOF) dynamic model is also presented by an approximation of the stiffness, damping, and mass of the steering column. The results of the proposed analytical models are validated using ANSYS simulation.
Journal Article

A Comprehensive Rule-Based Control Strategy for Automated Lane Centering System

2022-04-18
Abstract To address the comfort and safety concerns related to driving vehicles, the Advanced Driver Assistance System (ADAS) is gaining huge popularity. The general architecture of autonomous vehicles includes perception, planning, control, and actuation. This article aims mainly at the controls aspect of one of the emerging ADAS features Lane Centering System (LCS). Limitations in deploying this feature from a controls point of view include maintaining the lane center with winding curvatures, dealing with the dynamic environment, optimizing controls where the perception of lane boundaries is erroneous, and, finally, concurring with the driver’s preferences. Although some research is available on LCS controls, most works are related only to the lateral controls by actuating steering. To increase the robustness, a comprehensive control strategy that involves lateral control, as well as longitudinal control along with a novel strategy to select the mode of driving, is proposed.
Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

A Combination of Intelligent Tire and Vehicle Dynamic Based Algorithm to Estimate the Tire-Road Friction

2019-04-08
Abstract One of the most important factors affecting the performance of vehicle active chassis control systems is the tire-road friction coefficient. Accurate estimation of the friction coefficient can lead to better performance of these controllers. In this study, a new three-step friction estimation algorithm, based on intelligent tire concept, is proposed, which is a combination of experiment-based and vehicle dynamic based approaches. In the first step of the proposed algorithm, the normal load is estimated using a trained Artificial Neural Network (ANN). The network was trained using the experimental data collected using a portable tire testing trailer. In the second step of the algorithm, the tire forces and the wheel longitudinal velocity are estimated through a two-step Kalman filter. Then, in the last step, using the estimated tire normal load and longitudinal and lateral forces, the friction coefficient can be estimated.
Journal Article

2-D CFAR Procedure of Multiple Target Detection for Automotive Radar

2017-09-23
Abstract In Advanced Driver Assistant System (ADAS), the automotive radar is used to detect targets or obstacles around the vehicle. The procedure of Constant False Alarm Rate (CFAR) plays an important role in adaptive targets detection in noise or clutter environment. But in practical applications, the noise or clutter power is absolutely unknown and varies over the change of range, time and angle. The well-known cell averaging (CA) CFAR detector has a good detection performance in homogeneous environment but suffers from masking effect in multi-target environment. The ordered statistic (OS) CFAR is more robust in multi-target environment but needs a high computation power. Therefore, in this paper, a new two-dimension CFAR procedure based on a combination of Generalized Order Statistic (GOS) and CA CFAR named GOS-CA CFAR is proposed. Besides, the Linear Frequency Modulation Continuous Wave (LFMCW) radar simulation system is built to produce a series of rapid chirp signals.
X